Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Chem Biol ; 19(4): 916-925, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38491942

RESUMEN

Bispecific antibodies (BsAbs) represent an emerging class of biologics that can recognize two different antigens or epitopes. T-cell engagers (TcEs) bind two targets in trans on the cell surface of the effector and target cell to induce proximal immune effects, opening exciting windows for immunotherapies. To date, the engineering of BsAbs has been mainly focused on tuning the molecular weight and valency. However, the effects of spatial factors on the biological functions of BsAbs have been less explored due to the lack of biochemical methods to precisely manipulate protein geometry. Here, we studied the geometric effects of the TcEs. First, by genetically inserting rigidly designed ankyrin repeat proteins into TcEs, we revealed that the efficacy progressively decreased as the spacer distance of the two binding domains increased. Then, we constructed 26 pairs of TcEs with the same size but varying orientations using click chemistry-mediated conjugation at different mutation sites. We found that linear ligation sites play a minor role in modulating cell-killing efficacy. Next, we rendered the TcEs' advanced topology by cyclization chemistry using the SpyTag/SpyCatcher pair or sortase ligation approaches. Cyclized TcEs were generally more potent than their linear counterparts. Particularly, sortase A cyclized TcEs, bearing a minimal tagging motif, exhibited better cell-killing efficacy in vitro and improved stability both in vitro and in vivo compared to the linear TcE. This work combines modern bioconjugation chemistry and protein engineering tools for antibody engineering, shedding light on the elusive spatial factors of BsAbs functionality.


Asunto(s)
Anticuerpos Biespecíficos , Linfocitos T , Anticuerpos Biespecíficos/genética , Anticuerpos Biespecíficos/uso terapéutico , Anticuerpos Biespecíficos/química , Química Clic , Ingeniería de Proteínas/métodos , Proteínas , Linfocitos T/inmunología , Humanos
3.
Protein Sci ; 30(2): 485-496, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33277949

RESUMEN

The insulin epitopes for two monoclonal antibodies (mAbs), OXI-005 and HUI-018, commonly used in combination for insulin concentration determination in sandwich assays, were determined using X-ray crystallography. The crystal structure of the HUI-018 Fab in complex with human insulin (HI) was determined and OXI-005 Fab crystal structures were determined in complex with HI and porcine insulin (PI) as well as on its own. The OXI-005 epitope comprises insulin residues 1,3,4,19-21 (A-chain) and 25-30 (B-chain) and for HUI-018 residues 7,8,10-14,17 (A-chain) and 5-7, 10, 14 (B-chain). The areas of insulin involved in interactions with the mAb are 20% (OXI-005) and 24% (HUI-018) of the total insulin surface. Based on the Fab complex crystal structures with the insulins a molecular model for simultaneous binding of the Fabs to PI was built and this model was validated by small angle X-ray scattering measurements for the ternary complex. The epitopes for the mAbs on insulin were found well separated from each other as expected from luminiscent oxygen channeling immunoassay results for different insulins (HI, PI, bovine insulin, DesB30 HI, insulin glargine, insulin lispro). The affinities of the OXI-005 and HUI-018 Fabs for HI, PI, and DesB30 HI were determined using surface plasmon resonance. The KD s were found to be in the range of 1-4 nM for the HUI-018 Fab, while more different for the OXI-005 Fab (50 nM for HI, 20 nM for PI and 400 nM for DesB30 HI) supporting the importance of residue B30 for binding to OXI-005.


Asunto(s)
Anticuerpos Monoclonales/química , Epítopos/química , Fragmentos Fab de Inmunoglobulinas/química , Insulina/química , Modelos Moleculares , Cristalografía por Rayos X , Mapeo Epitopo , Humanos
4.
J Biotechnol ; 260: 18-30, 2017 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-28867483

RESUMEN

Interactions between protein ligands and receptors play crucial roles in cell-cell signalling. Most of the human cell surface receptors have been identified in the post-Human Genome Project era but many of their corresponding ligands remain unknown. To facilitate the pairing of orphan receptors, 2762 sequences encoding all human single-pass transmembrane proteins were selected for inclusion into a mammalian-cell expression library. This expression library, consisting of all the individual extracellular domains (ECDs), was constructed as a Fab fusion for each protein. In this format, individual ECD can be produced as a soluble protein or displayed on cell surface, depending on the applied heavy-chain Fab configuration. The unique design of the Fab fusion concept used in the library led to not only superior success rate of protein production, but also versatile applications in various high-throughput screening paradigms including protein-protein binding assays as well as cell binding assays, which were not possible for any other existing expression libraries. The protein library was screened against human coagulation factor VIIa (FVIIa), an approved therapeutic for the treatment of hemophilia, for binding partners by AlphaScreen and ForteBio assays. Two previously known physiological ligands of FVIIa, tissue factor (TF) and endothelial protein C receptor (EPCR) were identified by both assays. The cell surface displayed library was screened against V-domain Ig suppressor of T-cell activation (VISTA), an important immune-checkpoint regulator. Immunoglobulin superfamily member 11 (IgSF11), a potential target for cancer immunotherapy, was identified as a new and previously undescribed binding partner for VISTA. The specificity of the binding was confirmed and validated by both fluorescence-activated cell sorting (FACS) and surface plasmon resonance (SPR) assays in different experimental setups.


Asunto(s)
Proteínas de la Membrana , Biblioteca de Péptidos , Receptores de Superficie Celular , Proteínas Recombinantes de Fusión , Clonación Molecular , Células HEK293 , Ensayos Analíticos de Alto Rendimiento , Humanos , Fragmentos Fab de Inmunoglobulinas/química , Fragmentos Fab de Inmunoglobulinas/genética , Fragmentos Fab de Inmunoglobulinas/metabolismo , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Receptores de Superficie Celular/química , Receptores de Superficie Celular/metabolismo , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Transfección
5.
Blood Adv ; 1(27): 2692-2702, 2017 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-29291252

RESUMEN

Tissue factor pathway inhibitor α (TFPIα) inhibits prothrombinase, the thrombin-generating complex of factor Xa (FXa) and factor Va (FVa), during the initiation of coagulation. This inhibition requires binding of a conserved basic region within TFPIα to a conserved acidic region in FXa-activated and platelet-released FVa. In this study, the contribution of interactions between TFPIα and the FXa active site and FVa heavy chain to prothrombinase inhibition were examined to further define the inhibitory biochemistry. Removal of FXa active site binding by mutation or by deletion of the second Kunitz domain (K2) of TFPIα produced 17- or 34-fold weaker prothrombinase inhibition, respectively, establishing that K2 binding to the FXa active site is required for efficient inhibition. Substitution of the TFPIα basic region uncharged residues (Leu252, Ile253, Thr255) with Ala (TFPI-AAKA) produced 5.8-fold decreased inhibition. This finding was confirmed using a basic region peptide (Leu252-Lys261) and Ala substitution peptides, which established that the uncharged residues are required for prothrombinase inhibitory activity but not for binding the FVa acidic region. This suggests that the uncharged residues mediate a secondary interaction with FVa subsequent to acidic region binding. This secondary interaction seems to be with the FVa heavy chain, because the FV Leiden mutation weakened prothrombinase inhibition by TFPIα but did not alter TFPI-AAKA inhibitory activity. Thus, efficient inhibition of prothrombinase by TFPIα requires at least 3 intermolecular interactions: (1) the TFPIα basic region binds the FVa acidic region, (2) K2 binds the FXa active site, and (3) Leu252-Thr255 binds the FVa heavy chain.

6.
J Immunol ; 197(4): 1054-64, 2016 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-27316685

RESUMEN

Multiple sclerosis (MS) is a chronic inflammatory disease of the CNS characterized by demyelination and axonal damage. Experimental autoimmune encephalomyelitis (EAE) is a well-established animal model for human MS. Although Th17 cells are important for disease induction, Th2 cells are inhibitory in this process. In this article, we report the effect of a Th2 cell product, extracellular matrix protein 1 (ECM1), on the differentiation of Th17 cells and the development of EAE. Our results demonstrated that ECM1 administration from day 1 to day 7 following the EAE induction could ameliorate the Th17 cell responses and EAE development in vivo. Further study of the mechanism revealed that ECM1 could interact with αv integrin on dendritic cells and block the αv integrin-mediated activation of latent TGF-ß, resulting in an inhibition of Th17 cell differentiation at an early stage of EAE induction. Furthermore, overexpression of ECM1 in vivo significantly inhibited the Th17 cell response and EAE induction in ECM1 transgenic mice. Overall, our work has identified a novel function of ECM1 in inhibiting Th17 cell differentiation in the EAE model, suggesting that ECM1 may have the potential to be used in clinical applications for understanding the pathogenesis of MS and its diagnosis.


Asunto(s)
Encefalomielitis Autoinmune Experimental/inmunología , Proteínas de la Matriz Extracelular/inmunología , Células Th17/inmunología , Animales , Western Blotting , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/inmunología , Ensayo de Inmunoadsorción Enzimática , Proteínas de la Matriz Extracelular/farmacología , Inmunohistoquímica , Inmunoprecipitación , Espectrometría de Masas , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Reacción en Cadena en Tiempo Real de la Polimerasa
7.
Nat Struct Mol Biol ; 18(9): 1068-74, 2011 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-21873984

RESUMEN

Vibrio parahaemolyticus protein L (VopL) is an actin nucleation factor that induces stress fibers when injected into eukaryotic host cells. VopL contains three N-terminal Wiskott-Aldrich homology 2 (WH2) motifs and a unique VopL C-terminal domain (VCD). We describe crystallographic and biochemical analyses of filament nucleation by VopL. The WH2 element of VopL does not nucleate on its own and requires the VCD for activity. The VCD forms a U-shaped dimer in the crystal, stabilized by a terminal coiled coil. Dimerization of the WH2 motifs contributes strongly to nucleation activity, as do contacts of the VCD to actin. Our data lead to a model in which VopL stabilizes primarily lateral (short-pitch) contacts between actin monomers to create the base of a two-stranded filament. Stabilization of lateral contacts may be a common feature of actin filament nucleation by WH2-based factors.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Proteínas Bacterianas/química , Vibrio parahaemolyticus/metabolismo , Actinas/química , Actinas/metabolismo , Secuencias de Aminoácidos , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/fisiología , Cristalografía por Rayos X , Dimerización , Proteínas de Microfilamentos/química , Proteínas de Microfilamentos/metabolismo , Proteínas de Microfilamentos/fisiología , Modelos Moleculares , Estructura Terciaria de Proteína , Vibrio parahaemolyticus/ultraestructura
8.
Cell ; 140(2): 246-56, 2010 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-20141838

RESUMEN

Vav proteins are guanine nucleotide exchange factors (GEFs) for Rho family GTPases. They control processes including T cell activation, phagocytosis, and migration of normal and transformed cells. We report the structure and biophysical and cellular analyses of the five-domain autoinhibitory element of Vav1. The catalytic Dbl homology (DH) domain of Vav1 is controlled by two energetically coupled processes. The DH active site is directly, but weakly, inhibited by a helix from the adjacent Acidic domain. This core interaction is strengthened 10-fold by contacts of the calponin homology (CH) domain with the Acidic, pleckstrin homology, and DH domains. This construction enables efficient, stepwise relief of autoinhibition: initial phosphorylation events disrupt the modulatory CH contacts, facilitating phosphorylation of the inhibitory helix and consequent GEF activation. Our findings illustrate how the opposing requirements of strong suppression of activity and rapid kinetics of activation can be achieved in multidomain systems.


Asunto(s)
Proteínas Proto-Oncogénicas c-vav/química , Cristalografía por Rayos X , Cinética , Modelos Moleculares , Estructura Terciaria de Proteína , Termodinámica
9.
J Biomol NMR ; 43(4): 255-9, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19152054

RESUMEN

GSP13 encoded by gene yugI is a sigma(B)-dependent general stress protein in Bacillus subtilis, which can be induced by heat shock, salt stress, ethanol stress, glucose starvation, oxidative stress and cold shock. Here we report the solution structure of GSP13 and it is the first structure of S1 domain containing protein in Bacillus subtilis. The structure of GSP13 mainly consists of a typical S1 domain along with a C-terminal 50-residue flexible tail, different from the other known S1 domain containing proteins. Comparison with other S1 domain structures reveals that GSP13 has a conserved RNA binding surface, and it may function similarly to cold shock proteins in response to cold stress.


Asunto(s)
Bacillus subtilis/genética , Proteínas Bacterianas/química , Proteínas de Choque Térmico/química , Resonancia Magnética Nuclear Biomolecular , Estructura Terciaria de Proteína , Bacillus subtilis/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Modelos Moleculares
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...